Core-Lib
embraces the Onion Architecture
1 2 for code reuse and data flow across libraries. Reusing code and moving logic from one Data-Layer
to another is straightforward.
The Data Layers
Data
LayerData Access
LayerService
Layer
Data Layer
The Data
layer defines low-level assets that are used to connect to various third-party sources. For example connection, entities, migration, mapping, etc.
Responsibilities:
- Define models/entities/connection/migration used by data source
Example define a database entity under the DB connection
/data_layers/data/db/user.py
from core_lib.data_layers.data.db.sqlalchemy.base import Base
from core_lib.data_layers.data.db.sqlalchemy.mixins.soft_delete_mixin import SoftDeleteMixin
from sqlalchemy import Column, Integer, VARCHAR
class User(SoftDeleteMixin, Base):
__tablename__ = 'user'
id = Column(Integer, primary_key=True, nullable=False)
email = Column(VARCHAR(length=255), nullable=False)
...
SQLAlchemy Structure:
- This is a common structure from SQLAlchemy for defining a table and mapping table columns
Class Definition inheriting from two classes
: This is the model class or entity being defined [1].SoftDeleteMixin
: Custom class provided by core-lib, offering functionality for soft deletion in SQLAlchemy models.Base
: Class facilitating smooth integration of soft deletion functionality into SQLAlchemy models.- Parameter order ensures that methods from
SoftDeleteMixin
take precedence over conflicting methods from theBase
class.
__tablename__
: This specifies the name of the database table associated with this model. In the above case, it’s set to ‘user’.Columns
:id
: This is a primary key column of type Integer, meaning it holds integer values and uniquely identifies each record in the table.email
: This is a column of type VARCHAR, which is a variable-length string type, with a maximum length of 255 characters. It stores the email address of the user.
Data Access Layer
Encapsulate and expose access methods to the Data
layer.
Responsibilities:
- Define
APIs
to access theData
Layer. - Using RuleValidator to validate update and create data.
- Exception handling happening in the data level.
- Optimization and speed of data fetching.
class UserDataAccess(DataAccess):
def __init__(self, db_session: SqlAlchemyConnectionRegistry):
self.db_session = db_session
def get(self, id: int):
with self.db_session.get() as session:
return session.Query(User).get(id)
Code Explained:
Class Definition
:UserDataAccess
: This is the class being defined.
Constructor
:__init__(self, db_session: SqlAlchemyConnectionRegistry)
: This is the constructor method. It initializes instances ofUserDataAccess
. It takes a parameterdb_session
of typeSqlAlchemyConnectionRegistry
, which provides access to the database session.
Attributes
:self.db_session
: This attribute stores the reference to the database session provided during initialization. It’s used to interact with the database.
get(self, id: int)
: This method fetches a user from the database based on the provided id.- It first opens a session using
self.db_session.get()
, which provides a context manager for accessing the database session. - Inside the context manager, it queries the database using
session.Query(User).get(id)
. This should fetch a user with the specifiedid
from theUser
table.
- It first opens a session using
Service Layer
The Service
layer provides an API that its users can access. And it will use DataLayer
/Other Services
/Connection
to do so.
Responsibilities:
-
Business Logic
-
Transform return data to
dict
-
Caching
from core_lib.data_transform.result_to_dict import ResultToDict
from core_lib.data_layers.service.service import Service
CACHE_KEY_USER = 'key_user_{user_id}'
class UserService(Service):
def __init__(self, user_data_access: UserDataAccess, user_friends_data_acccess: UserFriendsDataAccess):
self.user_data_access = user_data_access
self.user_friends_data_acccess = user_friends_data_acccess
@Cache(CACHE_KEY_USER)
@ResultToDict()
def get(self, user_id: int):
user = self.user_data_access.get(user_id)
if user.something:
user.friends = self.user_friends_data_acccess.get_user_friends(user_id)
return user
Code Explained:
Constants
:CACHE_KEY_USER
: This defines a constant string representing the cache key format for user-related data.
Class Definition
:UserService
: This is the class being defined. It provides services related to users.
__init__(self, user_data_access: UserDataAccess, user_friends_data_acccess: UserFriendsDataAccess)
: This is the constructor method. It initializes instances ofUserService
. It takes two parameters:user_data_access
: An instance ofUserDataAccess
, responsible for accessing user data.user_friends_data_acccess
: An instance ofUserFriendsDataAccess
, responsible for accessing user friends data.
Attributes
:self.user_data_access
: This attribute stores the instance ofUserDataAccess
.self.user_friends_data_acccess
: This attribute stores the instance ofUserFriendsDataAccess
.
- Methods:
get(self, user_id: int)
: This method retrieves user data for the given user_id.- It decorates the method with
@Cache(CACHE_KEY_USER)
, caching the results based on some cache key format. - It also decorates the method with
@ResultToDict()
, to transform the result into a dictionary format. - It retrieves user data using
self.user_data_access.get(user_id)
. - It fetches user friends data using
self.user_friends_data_acccess.get_user_friends(user_id)
. - Finally, it returns the user data.